Abstract

Tryptophan is the precursor for several neurotransmitters and metabolic regulators, which, although quantitatively of little importance in determining the dietary requirement, have major importance for interpreting symptoms of dietary tryptophan deficiency and excess. The quantitative dietary tryptophan requirement appears to vary widely across species, so intakes relative to requirements are more appropriate expressions for comparison of adverse effects across species than daily intake or diet concentration. Symptoms of tryptophan deficiency may occur at intakes as little as 25% below the requirement. Symptoms include reduced feed intake and reduced growth rate but also impaired skeletal development and aberrant behavior. Older animals appear less susceptible than younger animals to tryptophan deficiency and females less than males. Symptoms of excess tryptophan intake include reduced food intake and growth rate. In growing animals, it appears that tryptophan intakes of >10 times the requirement are necessary before there are detrimental effects on growth performance. At still greater intakes, fatty liver and fibrotic changes in muscles, lung, and pancreas and the serotonin syndrome may develop. In pigs, tryptophan intake of 60 times the daily requirement did not cause mortality. The maximal tryptophan oxidation rate, measured in vivo using 13C universally labeled tryptophan, may be a possible marker of the intake above which increasing intake increases the risk of adverse effects. The advantage of the oxidation technique is that it does not necessarily rely on but still allows the identification and measurement of amino acid metabolites and is therefore simpler and more universally applicable.

Introduction

shorten
黄金披萨中使用了进口白斯第尔顿奶酪、表面的金箔上点缀有里海俄罗斯鲟鱼子酱、法国松露和鹅肝。
Justin Bieb er just made tens of thousands of more dollars -- from his hair. The 'Baby' singer's locks sold on eBay yesterday with a final bid of $40,688.
Supporting Actress in a Mini-Series or Movie: Regina King, “American Crime”
一名11岁的女学生因发明了一个快速、廉价测试铅污染水的方法,而被誉为“美国顶尖青年科学家”。
The president lashed out at the UN on Sunday for voicing human rights concerns over his war on drugs, saying the Philippines might leave the organisation and form a new body with China and African nations.
2012年,谷歌发明了谷歌眼镜,一台你能戴在你脸上的电脑。在街上行走或者进行每天的任务的时候戴着它,可以同步看一些覆盖在眼镜上的日程会议,短信及地铁警戒等信息。戴着它行走的时候,可以用它们打视频电话,甚至把直播视频上传到网络,这一切都不需要动手。谷歌眼镜可能挺酷的,挺新颖,还有创新性,但是它绝对不是第一副可佩戴的电脑眼镜。
triangle
如果Lloyd Grossman有机会进入奥斯卡得主们的家中,他将会在很多不同的地方看到他们各自的小金人,从高级房产的壁炉台到积尘良久的壁橱深处,都可能看到它的身影。
Jamil Anderlini
3. 经济已经在崩溃,2014年到2016年的GDP将会更加难看
新兴市场出口额(以美元计算)下滑完全是一种价格效应,受到大宗商品价格下降的拖累。从数量上看,新兴市场出口自2014年以来一直持续上升,即便同比年增长率已放缓至2%左右——远远低于全球金融危机前后的两位数增长率,如第二张图表所示。
同样跻身2013年全球最贵城市前十名的还有新加坡、苏黎士、巴黎、委内瑞拉首都加拉加斯和日内瓦。
However, Baty said the stabilization of Chinese universities' rankings is no cause for alarm. "Continued investment built on decades of spending, and increased internationalization in Chinese higher education will no doubt ensure China's universities continue to strengthen," he said.
第十步 如果以上几条都做不到——就公告天下说你有反社会人格
democratic
The programme entered the ranking in second place in 2006 and was ranked top in 2008.
卡尔森一向热衷于歌唱事业和歌剧事业,因而这样的工作对她再合适不过了。
mortgage
Battle of the box office 电影贺岁档引发票房PK
余秀华
China's producer price index deflated by 3.3 per cent in annual terms last month, the most since September 2009. Prices in the mining sector were down 13.2 per cent, while raw materials prices fell 6.4 per cent.
如果(转变经济发展方式)还是空谈,不去付诸实施,那不是说又好又快,根本就撑不住啦。“
release
然而据北京出入境边防检查总站(Beijing General Station of Exit and Entry Frontier Inspection)称,只有14,000名旅客办理了过境免签手续,远低于官方此前预计的20,000人。
为提高中国足球在国际赛场上的竞争力,中国政府日前公布了最新的足球发展计划,将在2017年开设20000所足球专业学校,用于训练年轻球员、培养人才。

Dietary Requirements for Tryptophan

Pigs

The largest quantity of data on tryptophan requirement is for pigs, due to the economic importance of this knowledge. The daily requirement for tryptophan increases with the body weight of growing pigs and their realized growth potential (1). However, the tryptophan concentration in ideal protein, a protein that supplies all indispensable amino acids at requirement without excesses or deficiencies, appears to remain fairly constant. Because lysine is usually the first-limiting amino acid for growing pigs, tryptophan requirements are typically reported as a ratio to lysine. Susenbeth (2) reviewed a large number of dose-response experiments in growing pigs to derive the optimum tryptophan:lysine ratio, which he determined to be 0.174:1. This ratio was not affected by response criteria, e.g., body weight, performance level, protein or lysine level, or genetics of the animals. The constancy of this ratio implies that requirements of tryptophan, relative to lysine, are similar for growing pigs and pigs at maintenance.

There are few reports on the tryptophan requirement of mature pigs. Meisinger and Speer (3) concluded that an intake of 1.44 g/d tryptophan was sufficient to support optimal reproductive performance in pregnant sows, which was similar to the 1.4 g/d tryptophan proposed by Easter and Baker (4) for pregnant sows. Both the NRC (1) and Fuller et al. (5) suggested that the ratio of tryptophan:lysine was greater for maintenance, at 0.26:1 and 0.31:1, respectively, than for growth. More recently, Moehn et al. (6) determined the tryptophan requirement in pregnant sows to be 1.7 g/d in early and 2.6 g/d in late gestation and concluded that the optimum tryptophan:lysine ratio was 0.15:1. This was in contrast to the NRC (1), which suggested optimal ratios of 0.19 to 0.20:1 during gestation. Libal et al. (7) concluded that a dietary concentration of 1.7 g/kg tryptophan improved lactating sow performance over a concentration of 1.2 g/kg. Paulicks et al. (8) and Pampuch et al. (9) determined the dietary tryptophan requirement of lactating sows as 2.6 g/kg diet based on a variety of growth performance and plasma measurements. The tryptophan:lysine ratios in these lactation studies were 0.23 to 0.25:1 compared with the NRC (1) suggestion of 0.18:1. Because of the limited number of experiments and the greater variability in the results for the tryptophan requirements of sows, it cannot be ascertained whether the tryptophan requirement of pregnant or lactating sows, relative to lysine, is different from that of growing pigs.

Humans

The WHO (10) substantially revised the recommended daily intakes for protein and amino acids over earlier recommendations. This was necessitated by the emergence of improved methodologies for determination of amino acid requirements and a vastly expanded body of research. The tryptophan requirement for adult males was first determined by Rose et al. (11), who suggested the requirement to be 250 mg/d of tryptophan, based on N-balance studies. This value represented the greatest individual requirement; nevertheless, Rose et al. (11) cautioned that some individuals may require even greater amounts. Young et al. (12) found the tryptophan requirement of young adult men to be 2–3 mg/(kg·d), depending on the response criterion. Lazaris-Brunner et al. (13) determined the mean tryptophan requirement of adult, nonpregnant women to be 4.0 mg/kg body weight, using the indicator amino acid oxidation technique, with a safe intake of 5.0 mg/kg body weight. Consequently, the recommended daily intake of tryptophan was suggested as 4 mg/kg body weight for adult humans (10). In children, the recommended daily intake (10) decreases from 8.5 mg/kg body weight for infants 6 mo old to 6 mg/kg body weight for adolescents 18 y old, with the majority of change occurring in the first 10 y of life. Therefore, adult humans at maintenance appear to require a tryptophan:lysine ratio of 0.13:1, which is similar to the ratio suggested by WHO (10) for 6-mo-old infants. However, for children and adolescents between 3 and 18 y old, the WHO (10) suggested a tryptophan:lysine ratio of 0.18:0.20, which is similar to the optimum ratio (0.17:1) for growing pigs suggested by Susenbeth (2).

Other monogastric animals

The NRC (14) recommended 0.5 g/kg diet of tryptophan for maintenance in rats and 2.0 g/kg diet of tryptophan for growth and reproduction. The recommended dietary lysine concentrations were 1.1 g/kg diet and 9.2 g/kg for maintenance and growth, respectively, giving tryptophan:lysine ratios of 0.45:1 for maintenance and 0.217:1 for growth and reproduction.

Baker and Czarnecki-Maulden (15) compared the tryptophan requirement, relative to lysine, for cats and dogs to those of pigs. The ideal ratio of tryptophan:lysine was 0.19 for cats and 0.22 for dogs. These are slightly greater than that suggested for pigs at 0.18, but the differences are probably within the margin of error in these experiments due to the relatively small numbers of animals.

Summary

幸存的那只猫咪被命名特鲁珀,目前已经康复并找到了一个新家。
沃伦·比蒂和费·唐纳薇在宣布奥斯卡最佳影片奖时,因为错拿了评奖结果卡片,误将得奖影片念成了《爱乐之城》,而不是《月光男孩》。事后,负责处理奥斯卡奖项结果的会计公司发了一份公开道歉声明。
3. Kate Upton
2010年英文新年祝福邮件
“即便人们充分了解了(美联储政策的作用),市场动态也可能相对容易地变得不稳定或不利,”他说,“届时你将陷入一个卖盘压力自我强化的循环。”
勒布朗·詹姆斯
com共同,miss=mit送-共同送东西到指定处-委托com共同,mission(n 使命,任务)-受了别人的委托,说明你得到了别人的信任,所以这是一种使命。

Tryptophan deficiency and excess

Behavior.

The effects of tryptophan on behavior are thought to be mediated by serotonin, which is involved in the regulation of feeding behavior, sleep-wake cycle, and sexual behavior (16). Serotonin concentrations are dependent on the ratio of plasma tryptophan:large neutral amino acids (17) that can be manipulated by offering carbohydrate or protein meals (18) or by the acute tryptophan depletion or loading techniques (19). Tryptophan depletion and loading typically elicit acute, transient responses in plasma tryptophan and brain serotonin (19).

Acute tryptophan depletion is associated with increased pain sensitivity, acoustic startle, motor activity, and aggression in humans (20). Tryptophan deficiency increases anxiety and irritability in humans and may modulate aggressiveness and the response to stress in animals (21). Opposed to these findings, based on acute depletion techniques, chronic, moderate tryptophan deficiency showed little effect on behavior of weaned pigs (22). Carruba et al. (23) found that tryptophan deficiency caused increased male-to-male mounting behavior that was not observed in rats given adequate tryptophan. Conversely, Benedetti and Moja (24) found no impact of tryptophan deficiency on the sexual behavior in female rats.

A moderate increase in dietary tryptophan to 1.5 times the requirement reduced aggressive behavior in pigs (25). Adeola and Ball (26) concluded that supplementing diets with 5 g/kg of tryptophan, ∼2 times the requirement, attenuated the pigs' response to stress. Li et al. (27) tested dietary tryptophan concentrations of 1, 2, and 4 times the requirement in growing pigs and reported that tryptophan supplementation increased the time spent laying down and reduced the time spent fighting among unfamiliar pigs. Conversely, Li et al. (28) found that increasing dietary tryptophan to 2.3 times the requirement did not effectively control aggression or the response to stress in sows. These differences in response may be caused by either a greater tolerance to excess tryptophan by adult compared with growing pigs or may be a reflection of the uncertainty of tryptophan requirement in sows. Poletto et al. (29) found increased lying down and reduced aggressive behavior in growing pigs fed tryptophan at 3 times the requirement for 1 wk. Koopmans et al. (3032) conducted a series of experiments in which the dietary tryptophan concentration was increased from 2.0 to 7.0 g/kg diet or to ∼3.5 times the tryptophan requirement. At the greater tryptophan level, Koopmans et al. (30) reported reduced baseline stress hormone levels and more rapid recovery in pigs without alterations in behavior pattern and also reported reduced activity of piglets (31). Koopmans et al. (32) found that increasing dietary tryptophan reduced fasting plasma cortisol and noradrenalin and urinary excretion of adrenalin and noradrenalin in growing pigs. In this study, they found reduced insulin sensitivity without affecting N excretion, indicating that lower basal levels of stress hormones were associated with insulin resistance (32). In none of the studies cited above were depressions in feed intake or performance reported. Therefore, tryptophan intake in the range of 2–4 times the requirement, although it does not result in detrimental effects on the performance of growing animals, appears to modify behavior.

In humans, tryptophan has been studied to treat depressive disorders. Doses of 3–8 g/d tryptophan alone showed mixed results with regards to effectiveness in treating clinical depressive disorders (19). However, when combined with monoamineoxidase inhibitors, doses of 6–18 g/d tryptophan showed positive effects in depression treatment (19). A dose of 3 g/d tryptophan is ∼12 times the requirement of an adult human. Therefore, it appears that tryptophan doses of at least 10 times the daily requirement are necessary to elicit pharmacological responses.

Animal performance

Beeson et al. (33) described that lack of tryptophan decreased feed efficiency and feed intake and caused weight loss in weanling pigs. Henry et al. (34) observed reductions of feed intake in growing pigs when tryptophan was reduced by only 25% from 1.6 to 1.2 g/kg. The onset of feed intake reduction and its magnitude were dependent on the dietary protein concentration, with pigs being less sensitive to tryptophan deficiency at a low dietary protein concentration (35). Henry (36) showed that reduction of dietary tryptophan from 0.13 to 0.10% reduced feed intake, growth performance, and tissue gain in finishing pigs offered feed at 125 g/kg0.75 body weight. The negative effects were less pronounced in older pigs and castrated males compared with females (36). Henry et al. (34) replicated these results and found that additional protein depressed serotonin production more in tryptophan-deficient than tryptophan-adequate diets. Henry et al. (34) concluded that the effects of tryptophan on feed intake were mediated by serotonin. Ettle and Roth (37) found that tryptophan deficiency in pigs reduced growth performance and that pigs were able to detect tryptophan deficiency-induced metabolic changes, as indicated by an aversion against consuming the tryptophan-deficient diet. The competition for transport between tryptophan and large neutral amino acids (21) limits the transport of tryptophan across the blood-brain barrier more at greater protein intakes and thus may attenuate serotonin synthesis.

Lewis et al. (38) fed weaned piglets diets containing up to 3.6 g/kg tryptophan, approximately twice the requirement, at different lysine levels and observed no adverse effects on growth performance. In pregnant sows, a nonsignificant (P = 0.12) increase in indicator amino acid oxidation was observed (R.O. Ball, unpublished results) when the tryptophan intake approached twice the requirement. Edmonds and Baker (39) tested tryptophan additions of 5, 10, 20, and 40 g/kg diet to a 20% crude protein, corn-soybean meal diet formulated to meet all requirements. The weaned piglets reduced feed intake and growth rate only at the highest level of tryptophan supplementation. In a dose-response study with force-fed growing pigs, Chung et al. (40) observed an increasing incidence of diarrhea when tryptophan intake was increased up to 5.71 g/kg body weight. Therefore, it appears that detrimental effects on pig performance, similar to pharmacological effects in humans, do not manifest themselves at tryptophan intakes of less than ∼10 times the requirement.

Gross et al. (41) fed rats diets containing 20% casein with 10, 20, or 50 g/kg added tryptophan. The rats given the highest tryptophan level had reduced weight gain, but no mortalities were observed over a 12-wk period at any tryptophan level. Muramatsu et al. (42) observed a drastic reduction of growth rate when rats were fed a 6% casein diet supplemented with 50 g/kg tryptophan, but a 25% casein diet supplemented with 50 g/kg diet tryptophan did not result in any growth depression over a 3-wk period in the rats (43). This indicates that in rats, similar to pigs, adverse effects of excess tryptophan are unlikely to appear at intakes of <10 times the requirement. Additionally, it appears that increased dietary intake of large neutral amino acid can attenuate the detrimental effects of excess tryptophan in growing animals.

Pathological changes.

Tryptophan deficiency can cause pathological changes in animals. Sidransky (44) compiled results that described the development of cataracts and corneal vascularization, anemia and reduced plasma protein concentration, fatty liver, and pancreas atrophy in animals exposed to tryptophan deficiency. These changes may be related to the effect of tryptophan on protein synthesis. Omstedt et al. (45) and Naito and Kandatsu (46) showed decreased muscle protein synthesis but increased liver protein synthesis when rats were fed a tryptophan-deficient diet. Lenis et al. (47) reported impaired leg development in growing pigs when feeding tryptophan-deficient diets. Because deficiencies of other amino acids may elicit similar symptoms, except perhaps for cataract formation, Sidransky (44) suggested that tryptophan deficiency resembled protein deficiency.

Interestingly, Sidransky (44) listed fatty liver as a pathological change following excess tryptophan intake, which was suggested to be related to increased fatty acid synthesis after tryptophan dosing rather than the impairment of lipoprotein release that occurs in tryptophan deficiency. Occasionally, fibrotic changes in lungs, muscle, and pancreas have been described, but it is open to debate whether tryptophan excess was the cause (44).

Tryptophan toxicity

Gullini et al. (48) reported the LD50 value, the dose that is lethal for 50% of animals tested, for tryptophan in rats as 1.6 g/kg body weight when administered i.p. The LD50 after i.v. or i.p. administration of tryptophan in mice and rabbits was ∼2 g/kg body weight. Conversely, when administered orally, the LD50 in mice and rabbits was between 5 and 16 g/kg bodyweight. Oral doses of 5.71 g/kg body weight applied by stomach tubes, i.e., amore than 3 times the i.p. LD50 for rats and ∼60 times the requirement of pigs, caused no mortality in pigs of 50 kg body weight (40). Sidransky (44) concluded that tryptophan had generally low acute toxicity or could be considered as nontoxic. In their review, Benevenga and Steele (49) summarized these and other data and argued that the toxicity of tryptophan was low, because toxic effects were not observed until intake was >30 times the oral requirement. However, route of administration, dietary protein, and food intake appear to influence the manifestation of toxic symptoms.

Toxicity of tryptophan differs among species (44). These differences appear to be related to the presence or absence of the apoenzyme for tryptophan 2,3-dioxygenase or hormonal induction mechanism. Species that lack the apoenzyme or induction mechanism are more sensitive to the toxicity of tryptophan and are thus not suitable as models for studying human tryptophan metabolism (50). These species include cat, gerbil, hamster, guinea pig, sheep, and cow. Species that express the apoenzyme, pig, rat, human, and dog, are more tolerant to tryptophan excess. Therefore, rats, dogs, and pigs appear most suitable as models to study the detrimental effects of excess tryptophan intake in humans.

Safe Intake of Tryptophan

但是,我们也许终于走到了终点。也许只有在该剧落幕之后,它对成衣秀的影响力才会终结。也许我们对历史无休止的模仿(是的,我们曾模仿70年代的风格以及80年代的大波浪头和高垫肩)才会最终停止。
7.摩洛哥
She said: 'On a scale of one to 10, I feel I'm at a nine because there's definitely room for improvement. I know I could go further.'
Someone might tell you to ‘Be yourself' in the interview. Don't be yourself. That's the worst advice ever. We don't want people who are neurotic and quirky and whatever else. All we care about is your skill and experience.
《Trigger Mortis》于9月8日发行,先于10月26日上映的007新电影《(幽灵党(暂译)》(Spectre)。
“一个员工离开时留了张便利贴,上面写着他走人了。”
23岁的古纳尔?优素福(Gunal Youssouf)是Teach First人,她加入了普华永道(PwC)英国分公司的管理咨询毕业生项目。优素福表示,在Teach First的两年让她有机会在不用花钱攻读传统资格证书的情况下尝试教学工作。
请尊重一下那些支持你的人以及节目主持人,能在访谈开始前把口香糖吐了吗?
12. “The Kindergarten Teacher” (Nadav Lapid)
“有个员工把一块上面写着‘我不干了!’的砖头扔进公司窗户。”
其他在定制课程排名中表现突出的学校包括哈佛商学院(Harvard Business School),该院取得了今年最大幅度的排名攀升,上升9位至第5名。两年前,这所位于马萨诸塞州的学院还排在第18位。
This year, online storefronts will generate an estimated $294 billion, or approximately 9% of all U.S. retail sales, according to forecasts by Forrester Research. By 2018, e-commerce will account for more than 11% of the total, or approximately $414 billion, with transactions made with tablets and smartphones accounting for about 20% of the online total, Forrester projects.

Noguchi et al. (51) suggested a metabolomic approach to identify the upper safe limit of amino acid intake, whereas Okuno et al. (52) suggested analysis of urinary excretion of tryptophan metabolites. A third possibility is to determine intake at which the maximum rate of amino acid oxidation occurs (53). At intakes below the maximum rate of oxidation, the risk is generally assumed to be low, whereas at intakes greater than the maximum rate of oxidation, the risk of adverse effects is predicted to increase. This approach has been successfully used to determine the upper safe intake of phenylalanine in piglets (54) and leucine in rats (55) and humans (56). These authors used the direct oxidation technique and found that leucine oxidation plateaued at ∼10 times the estimated average requirement. The direct oxidation technique is generally limited in its application to essential amino acids, where the carboxyl group is directly released into the bicarbonate pool and will therefore readily appear in breath (53). An option would be the use of universally labeled amino acids, which may be expected to be less sensitive than using 1-13C-labeled amino acids but would still allow the determination of the maximum rate of oxidation. In addition, the appearance of label in metabolites following administration of universally labeled tryptophan could be measured as indicators of potential for adverse effects. No reports were found in the literature on the upper limits of tryptophan oxidation. The advantage of the oxidation technique is that it does not necessarily rely on the identification and measurement of amino acid metabolites and is therefore simpler and more universally applicable. This last point is important, because it allows a direct comparison of safe levels of intakes using the same methodology, based upon maximum rate of oxidation, across all of the amino acids.

Acknowledgments

Aaron Hernandez
'Don't ever do this again,' she said to herself. 'It's so scary.'

Literature Cited

1.

NRC
.

Nutrient requirements of swine.
10th rev. ed.
Washington, DC
:
National Academies Press
;
1998
.
2.

Susenbeth
A
.

Optimum tryptophan: lysine ratio in diets for growing pigs: analysis of literature data
.
Livest Sci.
2006
;
101
:
32
45
.
3.

Meisinger
DJ
,
Speer
VC
.

Tryptophan requirement for reproduction in swine
.
J Anim Sci.
1979
;
48
:
559
69
.
4.

Easter
RA
,
Baker
DH
.

Nitrogen metabolism of gravid gilts fed purified diets deficient in either leucine or tryptophan
.
J Anim Sci.
1977
;
44
:
417
21
.
5.

Fuller
MF
,
McWilliam
R
,
Wang
TC
,
Giles
LR
.

The optimum dietary amino acid pattern for growing pigs. 2. Requirements for maintenance and for tissue protein accretion
.
Br J Nutr.
1989
;
62
:
255
67
.
6.

Moehn
S
,
Franco
D
,
Levesque
C
,
Samuel
R
,
Ball
RO
.

Estimation of amino acid requirements for modern sows.
Proceedings of the 72nd Minnesota Nutrition Conference
;
2011 Sep 20-21
;
Owatonna, MN
.
Minneapolis (MN)
:
University of Minnesota Extension
;
2011
. p.
216
27
.
7.

Libal
GW
,
Uttecht
DJ
,
Hamilton
CR
.

Tryptophan needs of lactating sows fed diets supplemented with crystalline lysine
.
J Anim Sci.
1997
;
75
:
417
22
.
8.

Paulicks
BR
,
Pampuch
FG
,
Roth-Maier
DA
.

Studies on the tryptophan requirement of lactating sows. Part 1: estimation of the tryptophan requirement by performance
.
J Anim Physiol Anim Nutr (Berl).
2006
;
90
:
474
81
.
9.

Pampuch
FG
,
Paulicks
BR
,
Roth-Maier
DA
.

Studies on the tryptophan requirement of lactating sows. Part 2: Estimation of the tryptophan requirement by physiological criteria
.
J Anim Physiol Anim Nutr (Berl).
2006
;
90
:
482
6
.
10.

WHO
.

Protein and amino acid requirements in human nutrition.
Report of a Joint WHO/FAO/UNU Expert Consultation. WHO Technical Report Series 935
.
Geneva
:
WHO Press
;
2007
.
11.

Rose
WC
,
Lambert
GF
,
Coon
MC
.

The amino acid requirements of man. VII. general procedures; the tryptophan requirement
.
J Biol Chem.
1954
;
211
:
815
27
.
12.

Young
VR
,
Hussein
MA
,
Murray
E
,
Scrimshaw
NS
.

Plasma tryptophan response curve and its relation to tryptophan requirements in young adult men
.
J Nutr.
1971;101
:
45
59
.
13.

Lazaris-Brunner
G
,
Rafii
M
,
Ball
RO
,
Pencharz
PB
.

Tryptophan requirement in young adult women as determined by indicator amino acid oxidation with L-[13C]phenylalanine
.
Am J Clin Nutr.
1998
;
68
:
303
10
.
14.

NRC
.

Nutrient requirements of laboratory animals.
4th rev. ed.
Washington
:
National Academies Press
;
1995
.
15.

Baker
DH
,
Czarnecki-Maulden
GL
.

Comparative nutrition of cats and dogs
.
Annu Rev Nutr.
1991
;
11
:
239
63
.
16.

Reilly
JG
,
McTavish
SFB
,
Young
AH
.

Rapid depletion of plasma tryptophan: a review of studies and experimental methodology
.
J Psychopharmacol.
1997
;
11
:
381
92
.
17.

Fernstrom
JD
,
Wurtman
RJ
.

Brain serotonin content: physiological regulation by plasma neutral amino acids
.
Science.
1972
;
178
:
414
6
.
18.

Orosco
M
,
Gerozissis
K
.

Macronutrient-induced cascade of events leading to parallel changes in hypothalamic serotonin and insulin
.
Neurosci Behav Rev.
2001
;
25
:
167
74
.
19.

Richard
DM
,
Dawes
MA
,
Mathias
CW
,
Acheson
A
,
Hill-Kapturczak
N
,
Dougherty
DM
.

L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications
.
Int J Tryptophan Res.
2009
;
2
:
45
60
.
20.

Hood
SD
,
Bell
CD
,
Nutt
DJ
.

Acute tryptophan depletion. Part I: rationale and methodology
.
Austr N Z J Psych.
2005
;
39
:
558
64
.
21.

Le Floc'h
N
,
Seve
B
.

Biological roles of tryptophan and its metabolism: potential implications for feeding
.
Livest Sci.
2007
;
112
:
23
32
.
22.

Meunier-Salaün
MC
,
Monnier
M
,
Colleaux
Y
,
Seve
B
,
Henry
Y
.

Impact of dietary tryptophan and behavioral type on behavior, plasma cortisol, and brain metabolites of young pigs
.
J Anim Sci.
1991
;
69
:
3689
98
.
23.

Carruba
MO
,
Picotti
GB
,
Genovese
E
,
Mantegazza
P
.

Stimulatory effect of a maize diet on sexual behavior of male rats
.
Life Sci.
1977
;
20
:
159
64
.
24.

Benedetti
F
,
Moja
EA
.

Failure of a tryptophan-free amino acid mixture to modify sexual behavior in the female rat
.
Physiol Behav.
1993
;
54
:
1235
7
.
25.

Martínez-Trejo
G
,
Ortega-Cerrilla
ME
,
Rodarte-Covarrubias
LF
,
Herrera-Haro
LF
,
Figueroa-Velasco
JL
,
Galindo-Maldonado
F
,
Sánchez-Martínez
O
,
Lara-Bueno
A
.

Aggressiveness and productive performance of piglets supplemented with tryptophan
.
J Anim Vet Adv.
2009
;
8
:
608
11
.
26.

Adeola
O
,
Ball
RO
.

Hypothalamic neurotransmitter concentrations and meat quality in stressed pigs offered excess dietary tryptophan and tyrosine
.
J Anim Sci.
1992
;
70
:
1888
94
.
27.

Li
YZ
,
Kerr
BJ
,
Kidd
MT
,
Gonyou
HW
.

Use of supplementary tryptophan to modify the behavior of pigs
.
J Anim Sci.
2006
;
84
:
212
20
.
28.

Li
YZ
,
Baidoo
SK
,
Johnston
LJ
,
Anderson
JE
.

Effects of tryptophan supplementation on aggression among group-housed gestating sows
.
J Anim Sci.
2011
;
89
:
1899
907
.
29.

Poletto
R
,
Meisel
RL
,
Richert
BT
,
Cheng
H-W
,
Marchant-Forde
JN
.

Aggression in replacement grower and finisher gilts fed a short-term high tryptophan diet and the effect of long-term human-animal interaction
.
Appl Anim Behav Sci.
2010
;
122
:
98
110
.
30.

Koopmans
SJ
,
Ruis
M
,
Dekker
R
,
Korte
M
,
Mroz
Z
.

Surplus dietary tryptophan reduces plasma cortisol and noradrenaline concentrations and enhances recovery after social stress in pigs
.
Physiol Behav.
2005
;
85
:
469
78
.
31.

Koopmans
SJ
,
Guzik
AC
,
van der Meulen
J
,
Dekker
R
,
Kogut
J
,
Kerr
BJ
,
Southern
LL
.

Effects of supplemental L-tryptophan on serotonin, cortisol, intestinal integrity, and behavior in weanling piglets
.
J Anim Sci.
2006
;
84
:
963
71
.
32.

Koopmans
SJ
,
Ruis
M
,
Dekker
R
,
Korte
M
.

Surplus dietary tryptophan inhibits stress hormone kinetics and induces insulin resistance in pigs
.
Physiol Behav.
2009
;
98
:
402
10
.
33.

Beeson
WM
,
Mertz
ET
,
Shelton
DC
.

Effect of tryptophan deficiency on the pig
.
J Anim Sci.
1949
;
8
:
532
40
.
34.

Henry
Y
,
Seve
B
,
Mounier
A
,
Ganier
P
.

Growth performance and brain neurotransmitters in pigs as affected by tryptophan, protein, and sex
.
J Anim Sci.
1996
;
74
:
2700
10
.
35.

Henry
Y
,
Sève
B
,
Colléaux
Y
,
Ganier
P
,
Saligaut
C
,
Jégo
P
.

Interactive effects of dietary levels of tryptophan and protein on voluntary feed intake and growth performance in pigs, in relation to plasma free amino acids and hypothalamic serotonin
.
J Anim Sci.
1992
;
70
:
1873
87
.
36.

Henry
Y
.

Effects of dietary tryptophan deficiency in finishing pigs, according to age or weight at slaughter or live weight gain
.
Livest Prod Sci.
1995
;
41
:
63
76
.
37.

Ettle
T
,
Roth
FX
.

Specific dietary selection for tryptophan by the piglet
.
J Anim Sci.
2004
;
82
:
1115
21
.
38.

Lewis
AJ
,
Peo
ER
Jr
,
Cunningham
PJ
,
Moser
BD
.

Determination of the optimum dietary proportions of lysine and tryptophan for growing pigs based on growth, food intake and plasma metabolites
.
J Nutr.
1977
;
107
:
1369
76
.
39.

Edmonds
MS
,
Baker
DH
.

Methionine, tryptophan, threonine or leucine amino acid excesses for young pigs: effects of excess
.
J Anim Sci.
1987
;
64
:
1664
71
.
40.

Chung
TK
,
Gelberg
HB
,
Dorner
JL
,
Baker
DH
.

Safety of L-tryptophan for pigs
.
J Anim Sci.
1991
;
69
:
2955
60
.
41.

Gross
B
,
Ronen
N
,
Honigman
S
,
Livne
E
.

Tryptophan toxicity-time and dose response in rats
.
Adv Exp Med Biol.
1999
;
467
:
507
16
.
42.

Muramatsu
K
,
Odagiri
H
,
Morishita
S
,
Takeuchi
H
.

Influence of protein source on growth-depressing effect of excess amino acids in young rats
.
Agric Biol Chem.
1971
;
36
:
1269
76
.
43.

Muramatsu
K
,
Takeuchi
H
,
Funaki
Y
,
Chisuwa
A
.

Effect of excess amino acids of individual amino acids on growth of rats fed casein diets
.
J Nutr.
1971
;
101
:
1117
25
.
44.

Sidransky
H
.

Tryptophan. Biochemical and health implications
.
Boca Raton (FL)
:
CRC Press
;
2002
.
45.

Omstedt
PT
,
von der Decken
A
.

Dietary amino acids: effect of depletion and recovery on protein synthesis in vitro in rat skeletal muscle and liver
.
Br J Nutr.
1974;31
:
67
76
.
46.

Naito
H
,
Kandatsu
H
.

Effect of essential amino acid deficiency on protein nutrition. 3. Incorporation of 35S methionine into the tissues of rats fed on tryptophan deficiency
.
Agric Biol Chem.
1970
;
34
:
1078
83
.
47.

Lenis
NP
,
van Diepen
JTM
,
Goedhart
PW
.

Amino acid requirements of pigs. 1. Requirements for methionine + cystine, threonine and tryptophan for fast growing boars and gilts, fed ad libitum
.
Neth J Agric Sci.
1990
;
38
:
577
95
.
48.

Gullino
P
,
Winitz
M
,
Birnbaum
SM
,
Cornfield
J
,
Otey
MC
,
Greenstein
JP
.

Studies on the metabolism of amino acids and related compounds in vivo. I. Toxicity of essential amino acids, individually and in mixtures, and the protective effect of l-arginine
.
Arch Biochem Biophys.
1956
;
64
:
319
32
.
49.

Benevenga
NJ
,
Steele
RD
.

Adverse effects of excessive consumption of amino acids
.
Annu Rev Nutr.
1984
;
4
:
157
81
.
50.

Badawy
AA-B
,
Evans
M
.

Animal liver tryptophan pyrrolases. Absence of apoenzyme and of hormonal induction mechanism from species sensitive to tryptophan toxicity
.
Biochem J.
1976
;
158
:
79
88
.
51.

Noguchi
Y
,
Sakai
R
,
Kimura
T
.

Metabolomics and its potential for assessment of adequacy and safety of amino acid intake
.
J Nutr.
2003
;
133
:
S2097
100
.
52.

Okuno
A
,
Fukuwatari
T
,
Shibata
K
.

Urinary excretory ratio of anthranilic acid/kynurenic acid as an index of the tolerable amount of tryptophan
.
Biosci Biotechnol Biochem.
2008
;
72
:
1667
72
.
53.

Pencharz
PB
,
Elango
R
,
Ball
RO
.

An approach to defining the upper safe limits of amino acid intake
.
J Nutr.
2008
;
138
:
S1996
2002
.
54.

House
JD
,
Pencharz
PB
,
Ball
RO
.

Phenylalanine requirements determined by using L-[1–14C]phenylalanine in neonatal piglets receiving total parenteral nutrition supplemented with tyrosine
.
Am J Clin Nutr.
1997
;
65
:
984
93
.
55.

Sakai
R
,
Miura
M
,
Amao
M
,
Kodama
R
,
Toue
R
,
Noguchi
Y
,
Kimura
T
.

Potential approaches to the assessment of amino acid adequacy in rats: a progress report
.
J Nutr.
2004
;
134
Suppl 6
:
S1651
5
.
56.

Pencharz
PB
,
Elango
R
,
Ball
RO
.

Determination of the tolerable upper intake level of leucine in adult men
.
J Nutr.
2012
;
142
:
2220S
24S
.

Footnotes

1

Published in a supplement to The Journal of Nutrition. Presented at the 8th Workshop on the Assessment of Adequate and Safe Intake of Dietary Amino Acids, held in Washington, DC, November 10–11, 2011. The conference was sponsored by the International Life Sciences Institute Research Foundation. The Organizing Committee for the workshop included Sidney M. Morris Jr, Dennis M. Bier, Luc A. Cynober, Motoni Kadowaki, and Andrew G. Renwick. The views expressed in these papers are not necessarily those of the Supplement Coordinator or Guest Editors. The Supplement Coordinator for this supplement was D'Ann Finley, University California, Davis. Supplement Coordinator disclosures: D'Ann Finley received travel support and compensation from ICAAS for editorial services provided for this supplement publication. The supplement is the responsibility of the Guest Editor to whom the Editor of The Journal of Nutrition has delegated supervision of both technical conformity to the published regulations of The Journal of Nutrition and general oversight of the scientific merit of each article. The Guest Editor for this supplement was Harry Dawson. Guest Editor disclosure: Harry Dawson had no conflicts to disclose. Publication costs for this supplement were defrayed in part by the payment of page charges. This publication must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact. The opinions expressed in this publication are those of the authors and are not attributable to the sponsors or the Publisher, Editor, or Editorial Board of The Journal of Nutrition.